OpenNMS qosdaemon Documentation

This document describes the qosdaemon which impliments the OpenNMS OSS/J Qos Interface and
has been contributed to OpenNMS by the University of Southampton.

Author: Craig Gallen

Version:1.2
Date: 7-11-06

Table of Contents

OpenNMS qosdaemon DOCUMENTATION.ccirruiiieiriiiiieeeeriiie e eeieee e e et eeeeseibeeeesenbreeeeennneaeeeeeas 1
INtroduction tO OSS/T.....oonii ettt ettt ettt e 2
OSS/J CONTOTINANCE.c..eeiiiieiiieeitie ettt ettt st et sh bt e bt e e bt e et e e e bt e e bt e e bt e ebeeeabaeenbeeebee s 4
ProdUCHION USE.....c.eiiiiiiiie ittt ettt et e sttt e st e sab e st e sateeeanee 4
LLISCRIICE. ...ttt et ettt ettt et e e h e e bt e st e sb bt e bt e et e e et e e bt e eab e e ea e nbeeeanee 5
Functionality Provided..........cc.ooiiiiiiiiiiiiieceee ettt ettt e et e e st e s st ee e s baeeenaes 6
(0 1o) D F: <5 11T} s FO RPN 6

a. Native OpenNMS provided INterface........cccuueeriiiiriiiiiiieiiieeeetee et 6

b. Separate J2EE server provided interface............coovvvieriiiiiniiieeniieeeiie et 7

L0 100 D 5 S USSR SRR 9
Appendix 1: Example Configuration of the OSS/J interface...........ccocceeviviiiiinniiiiniiiie e, 10
Appendix 2: Notes on setting up qosdaemon on Fedora 4............ccccceoveiiiiiniiiniiiniciiieeecnecneee 16

Installing OpenNMS 1.3.2-SNAPSHOTcoooiiee et 16

Introduction to OSS/J

Operational Support Systems through Java (OSS/J) is an initiative initially championed by Sun
Microsystems but now encorporated into the Telemanagement Forum Prospero program. (see
www.ossj.org and www.tmforum.org). OSS/J provies a means to impliment the TMForum New

Generation Operational Support Systems (NGOSS) framework in Java/J2EE environments.

The OSS/J program has developed specifications for a number of Java API's to ease the integation
of Telecoms Operational Support Systems. The API's are collaboratively developed using the Java
Community process and released as both Java Interface specifications and supporting XSD
definitions. Fully implimented OSS/J interfaces support both Java Value Type (JVT) interactions
using interfaces defined using an ejb facade pattern and Message Orientated Middleware (MOM)
style interfaces using XML messages transported using JMS. Going forwards new API's will be
defined with profiles for Web Service (WSDL) style interactions and the Web Services profile will
be retrospectively applied to existing interfaces over time.

The earliest and, to date, the most widely deployed of the OSS/J API's are the Quality of Service
(Qos) and Trouble Ticket (TT) interfaces. Subsiquent to the initial definition of these interfaces,
OSS/J finalised a Common Business Entities (CBE) model in order to provide a more consistant
data model which was aligned with the TMForum SID. The newer OSS/J API's closely reference
the CBE but the earlier TT and Qos interfaces are not 100% aligned with the current CBE. OSS/J
are in the process specifying an aligned Trouble Ticket interface and seperate Fault Management
and Performance Management interfaces which will supercede the Qos api. However at the time
this project started, the new specifciations had not been released and it was prefered to work with
an alreadt finalised specifciation. However the new Fault API is substantially similar to the Qos
API and future support of the Fault API should be possible without a major re-write of the
interface.. In our design we have chosen not to impliment Qos interface functionality which we
know will not be supported by the new Fault interface. (In particular we have avoided using the
XmlSerialiser methods which have been deprecieted in OSS/J).

The OSS/J Quality of Service (Qos) specification defines API's for accessing Preformance
Management (PM) and Fault Management (FM) data on a Network management System (NMS). It
also defines a set of events which the NMS can publish to a Topic using a JMS provider to inform
clients of changes in state. The PM and FM sides of the interface can be implimented seperately.
The FM interface exposes an alarm list formatted according to the ITU-T X.733 standard and also
generates events as JMS messages corresponding changes in the alarm list (for example
NewAlarmEvent, ClearedAlarmEvent, AlarmAcknowledgeEvent and AlarmChangedEvent).
Clients of the Qos interface can register with the JMS provider to receive only alarms
corresponding to certain filter criteria such as PerceivedSeverity or ManagedObjectType or
Instance. This allows for a truly distributed system where clients only register to receive messages
relavant to their purpose. It is possible for Clients to maintain a local copy of the state of an alarm
list using events alone - which avoids the performance hit and potential latency involved in

http://www.ossj.org/
http://www.tmforum.org/

regularly querying the alarm list. The query interface is required however if the client needs to re-
synchronise it's view of the alarm list, say when it is starting up for the first time.

Design Philosophy

The qosdaemon project was initiated with a view to make the OpenNMS project more attractive for
Telecoms applications where integration to other OSS systems was an important consideration. As
a research project, we also wanted to offer a platform where OSS/J could be demonstrated as
providing useful functionality and which would provide a vechacle for the wider community to
impliment and experiment with NGOSS type solutions in an Open Source environment.

The JCP process used by OSS/J requires that the specifications be released with reference
implimentations and Technology Compatability Kits to test other implimnenations against the
specification. Thus the design goals of the OSS/J reference implimentations are to provide complete
and accurate implimentations of the OSS/J specifiction but not necessarily to provide re-uable
libraries or end user functionality. Also once complete, the OSS/J Reference Implimentations are
not necessarily subject to ongoing enhancement or maintainance by the original developers.

By way of contrast, the design goals of this project have been to utilise the OSS/J specifications to
realise useful functionality in order to allow practical use cases to be demonstrated. Thus the focus
has not been on accuracy or completeness of specification implimentation but on the realisation of a
viable end-user use case using OSS/J functionality within a community sustained open source
project. It is very important to realise that two key mantras of successful open source projects are;
'Release early and release often.' and 'Make it easy for potential users or contributors to assess and
begin using your offering'.

Therefore the design philospphy of the project has been; Firstly, to choose a use case for OpenNMS
which would leverage OSS/J and would deliver immediate value to OpenNMS community.
Secondly, to contribute the solution in such a way as it is fully sustainable as a mainstream
contribution to the OpenNMS project even in it's initial release. Thirdly, to only impliment enough
OSS/J functionality as was necessary to support the use case. And finally, to structure the design in
such a way as it will be possible for future contributions to go back and complete or address any
non-conformances in the design of the interface.

A key aspect of the design has been the seperate packaging of libraries (OSSbeans) which could be
generally useful for OSS/J implimentations from the OpenNMS specific interface code
(qosdeamon). The OSSbeans libraries are in a seperate Apache 2 liscenced project on Sourceforge.
The qosdaemon is fully integrated into the OpenNMS code tree and uses maven to encorporate the
OSSbeans dependancies into the opennms build. By this means it will be possible for the
development of the OpenNMS and the OSSbeans projects to proceed asynchronously and it will
also be possible for other projects to leverage OSSbeans. However the dependence of OpenNMS
Qos interface on the OSSbeans libraries should ensure that there is sufficient community interest to
sustain and carry forwards the OSSbeans project regardless of other users.

A key advantage of this design approach has been that the discipline of having to integrate into a
real application (OpenNMS) has made OSSbeans more useful as a library. Throughout the design
we have gone through multiple refactoring steps to partition the functionality so that it can easily be
picked up by an external application. A second advantage arises from the fact that designing
OSSbeans 2.1.0 as an initial offering has been something of an education. It is possible to see
numerous areas where the design could be improved. Thus given sufficient interest, future release
of OSSbeans will be able to learn the lessons of the first implimentation in order to provide a more
generally useful library. In addition the issues around OSS/J compliance are confined to the
OSSbeans library which can have it's own roadmap towards compliance as contributions fill in the

gaps.

0SS/J Conformance

This project provides partial implementation of the OSS/J QoS interface for OpenNMS. It is
offered as an illustrative and training tool to explain OSS/J and to guage interest from the
OpenNMS community in taking the project forwards.

This project leverages the OSSbeans project which provides the core classes for the OSS/J
implementation. OSSbeans are a seperate project hosted as part of the University of Southampton
OpenOSS initiative at http://sourceforge.net/projects/openoss

The interface is based upon the OSS/J QoS specification available at www.ossj.org. The basic
principles and design patterns of the the specification are implemented however not all of the
mandatory functionality is complete and the interface has not been tested against the OSS/J SDK.

Where functionality is provided it does so using classes implementing interfaces conforming to the
javax.oss interface tree and the XML messaging uses messages conforming to the OSS/J Qos
XSD's. This provides a firm basis for moving towards full OSS/J compliance in future releases.

Some work was done previously by the Budapest University of Business and Technology (BUTE)
to demonstrate that the PM interface could be implimented for OpenNMS. This work has not been
incorporated into the present Qos interface but could be taken forwards later. The present Qos
interface only impliments FM functionality. (Note however that it is still possible for OpenNMS
performance threshold crossing events to be converted into OSS/J faults reported by openNMS)

Production Use

The interface should be considered experimental and is not optimised for high load environments.
Although included with OpenNMS, it can be completely disabled and will not then interfere with

other OpenNMS components. However even in it's present form the interface may still be useful for
some production solutions. Envisaged uses include;

* Integration of OpenNMS alarms with other Operational Support Systems using J2EE or JIMS

* Monitoring important alarms from remote OpenNMS systems - potentially on a customer's site.
(Note that to circumnavigate firewalls JbossMQ can be configured to send JMS messages using
HTTP - although this has not been tested.)

As an example, the interface has been successfully used to integrate OpenNMS with an Alarm /
Topology correllation engine from Sidonis. www.sidonis.com as part of a proof of concept for
managing a Digital TV network

Liscence
The qosdaemon project builds an OSS/J interface for OpenNMS. It is released with OpenNMS
under the GPL licence and uses code contributed to OpenNMS by the University of Southampton.

OSSbeans (http://sourceforge.net/projects/openoss) are released under the Apache-2 licence by the
University of Southampton.

Functionality Provided

The current release of the qosdaemon module leverages OSSbeans Release 2.1.0 and provides the
following functionality. The module provides two daemons which can be used independently or
together. The daemons share a data access layer, OssDao which is a data access object which maps
the OSS/J Qos interface onto OpenNMS's internal alarm list exposed by the OnmsDao.

The qosd daemon publishes the internal OpenNMS alarm list as an OSS/J alarm list. The qosdrx
daemon allows an OpenNMS system to connect using the OSS/J interface to remote OpenNMS
systems running qosd. This allows a 'master' OpenNMS to monitor the state of the alarms lists in
'slave’ openNMS systems. The present implementation is almost exclusively JMS event driven with
limited alarm list query functionality provided as a J2EE option on qosd.

The implementation leverages JbossMQ as the JMS provider. In theory other JMS providers could
be used but these have not been tested.

QoSD daemon

The QoSD daemon monitors the OpenNMS alarm list and generates OSS/J JMS events
corresponding to changes in the state of the alarms in the list. It can run in two modes; natively on
OpenNMS or in conjunction with a separate J2EE application.

a. Native OpenNMS provided interface.

OpenNMS does not run natively in a J2EE container but leverages the spring framework and JMX
to provide a container like environment for it's daemons. The qosd daemon code can run natively as
a spring application within OpenNMS. In this case it uses the OSS/J XVT (XML over IMS)
profile to publish alarm list changes . The qosd daemon publishes OSS/J AlarmEvents as both JMS
TextMessages and as JMS ObjectMessages containing AlarmEvent objects.

RMI Alarm List

Linux Server Queries
OpenNMS Jboss

J OSSbean-ear
i (OSSbean-ejb)
RMI Alarm List

Updates

JMS ObjectMessage
AlarmEvents

Onms AlarmDao

JbossMQ
AlarmEventTopic JVT -

ST
"\ Event Clien:

®

AlarmEventTopic XVT vl

JMS TextMessage
(XML) AlarmEvents

Deployment Scenario :
OpenNMS exposes OSS/J JVT interface using separate J2ee Application

b. Separate J2EE server provided interface.

An alternative configuration is possible where the qosd daemon connects to an ejb application
running in a seperate J2EE server. This application is known as OSSBeans-qos-ear and is available
from the OSSbeans site. In this mode the ejb exposes OSS/J semantics and allows external
applications to connect with the ejb as an OSS/J JVT interface. Note that only a very limited alarm
list query functionality is currently provided (query for all alarms).

Note that this configuration requires a J2EE server (Jboss) to be hosting a OSSBeans-qos-ear
locally to each OpenNMS implementation which is running qosd in this mode. In most
circumstances, it is easier to use the native interface for the remote machines they can all use a
single JbossMQ deployment and a local J2EE server is not required for each OpenNMS.

Which mode qosd is running is determined by a setting in the opennms.conf file:
To use the native OpenNMS provided interface use -Dqosd.usej2ee=false
To use the seperate J2EE server provided interface use -Dqosd.usej2ee=true

Linux Server
OpenNMS 1

Onms AlarmDao

Linux Server
OpenNMS n

JMS ObjectMessage
AlarmEvents

Linux Server

Jboss

/ JbossMQ \

*‘ AlarmEventTopic JVT 1

“ AlarmEventTopic XVT 2 —]

% AlarmEventTopic JVT n

ﬂ\larmEventTopic XVTn

b

JMS TextMessage
(XML) AlarmEvents

b

JMS ObjectMessage
AlarmEvents

b

Deployment Scenario:
OpenNMS Publishes JVT and XVT (XML) alarm
events to topics on a separate JMS provider
(JbossMQ)

JMS TextMessage
(XML) AlarmEvents

QoSDrx

The qosdrx daemon can connect to multiple OSS/J event topics hosted on a JbossMQ server and receive OSS/J
alarm events from remote OpenNMS systems running qosd. The local alarm list will be updated to reflect the
remote alarm lists. Note that no resynchronization capability is provided at this time so it is possible for the alarm
lists to get out of alignment if messages are lost. However in practice, the JMS messaging system should provide a

reliable transport.

Linux Server Linux Server
Client subscribes to
OpenNMS 1 Jboss Qosd events from

Aggregated Alarm list
/ JbossMQ \
AlarmEventTopic X — | |
’—» Qosd Publishes to Alarm Event Topic

‘(AlarmEventTopic 1 -«
Qosdrx subscribes Alarm Event Topic
,{ AlarmEventTopic 2

Linux Server P

Alarm
Event Clien

A4

‘ @ @rm
» Event Event

Event Receiver Threads qosdrx
T
[OssDao J
[Onms A'IarmDao }

b |
OpenNMS

Linux Server

Deployment Scenario : OpenNMS gosdrx daemon creates
threads which subscribe to AlarmEvent Topics (JVT or XVT)
and updates the OpenNMS alarm list

Appendix 1: Example Configuration of the OSS/J interface

An example configuration for the OSS/J interface is provided in the OpenNMS /contrib/qosdaemon
directory. The following table describes the contents of each of the files.

The simplest way to get the OpenNMS Qos interface working is to build and install opennms of
Fedora Core 4 along with tomcat55 and then run the qos instalation script,
opennms_1_3_2_example_deploy_xdotx.sh, prior to starting OpenNMS. (See appendix on
instalation on FC4 below)

Configuration File Purpose
/qosdaemon
README.txt
LISCENCE(gpl).txt
[testscrips
opennms_IF.sh opennms_IF.sh runs a small client program called
opennms_IFOpenOSS1.sh SentinallF.java. This uses the properties in
opennms_IFOpenOSS2.sh qosclient.properties to connect to the AlarmEvent
opennms_IFOpenOSS3.sh Topic queue and receive AlarmEvents. The client can

display received events and can also forward much
simplified XML representation of the X733 Alarm
fields to a remove socket for interfacing to other
applications. For usage information type sh
opennms_IF.sh -help.

The opennms_IFOpenOSSx.sh scripts are
convenience scripts for starting the same client as
opennms_IF.sh using the properties in the
qosclientOpenOSSx.properties files)

gosclient.properties qosclient.properties sets up the configuration for the
gosclientOpenOSS|1.properties client interface to connect to anAlarmEvent Topic

gosclientOpenOSS2.properties
gosclientOpenOSS3.properties

/qos_example_configuration This example configuration provides a simple
example of how to set up the OpenNMS qosd
application. This should be used to help you work out
how to encorporate the gosdaemon into your local

configuration.

README..txt

opennms_1_3_2 example_deploy_1ldot0.sh This script provides a simple method to deploy all of
the example configuration files into the correct
directories.
Notes:

1. This script has been designed for use on a
Fedora core 4 installation using a jpackage

installation of tomcat55. A standard
installation of Jboss 4.0.2 is expected to be
simlinked from /opt/jboss and OpenNMS is
expected to be installed at /opt/OpenNMS.

2. The resulting configuration will leave jboss
configured to run on port 8080 and the
OpenNMS tomcat at 8081. This is to allow
tomcat and jboss to run on the same machine.
If they are running on seperate machines, the
tomcat setting need not be changed.

2. You must also change the hosts file to create
a hostname jbossjmsserver]l pointing to your
running jboss server. To do this from the kde
toolbar:

3. open /system settings/ network select the
hosts tab

4. select new and add a host with Hostname:
jbossjmsserverl Address 127.0.0.1

WARNING: without modification this script will
overwrite tomcat55 and OpenNMS configration files
in SOPENNMS_HOME/etc so only use on a new
install or if you are happy you have backed up your
local OpenNMS configruation files

/jboss This folder contains configuration files to set up
JbossMQ messaging (and optionally OSSbeans-qos-
ear-xx.ear if it is installed)

log4j.xml Sets up logging to minimise to INFO log messages

from OSSbeans-qos-ear-xx.ear if installed

openoss-jms-service.xml

Sets up 10 separate example AlarmTopics and
Message Queues to allow up to 10 OpenNMS qosd
deamons to publish to seperate topics. It thould be
fairly obvious how to increase / decreae the number of
topics or otehrwise change this configuration.

Notes

1. The names of the queues match the naming
conventions of the OSS/J qos specification.
This is merely a convention. The names are
actually treated as free format strings.

2. It should be easy to see how the Topic/
Queue names are matched to the names in the
qosd.properties, qosdclient.properties and
QoSDrxOssBeanRunnerSpringContext.xml

openoss_qos_jboss_start.sh

Starts jboss with the following system settings:
-Djava.rmi.server.hostname=jbossjmsserver1
-DqosbeanpropertiesFile=
/opt/jboss/server/default/conf/props/qosbean.propertie
S

(TODO - this appears not to be used — why?)

uil2-service.xml

Sets up the uil2 transport configuration for JbossMQ.

This could be changed to set up different JbossMQ
transport configuration

/opennms

This folder contains the core configuration files to get
the qosdaemon running

opennms.conf

This file is used to set system properties for
OpenNMS. The following properties are required for
gosdaemon:
-Djava.security.policy=/opt/OpenNMS/etc/rmi.policy
The security policy is requred to allow OpenNMS to
make an rmi connection to the OSSbeans-qos-ear-
xx.ear application if installed on jboss.

-Djava.naming.provider.url=
jnp://jbossjmsserver1:1099

This give the name of the jndi naming provider it is
set to jbossjmsserverl which should be the host name
of the Jboss server running JbossMQ. (This name can
ofcouurse be changed if all the other configuration
references to jbossjmsserverl are changed)

-Djava.naming.factory.initial=
org.jnp.interfaces.NamingContextFactory

-Djava.naming.factory.url.pkgs=org.jboss.naming
Points to the Jboss naming factory (this class is in the
Jboss Client library This could in theory be changed
to point to another J2ee provider if the correct client
classes are available. However this has not been
tested)

-DpropertiesFile=/opt/OpenNMS/etc/qosd.properties
qosd.properties provides the configuration for the
JMS topcis which opennms will publish to.

-Drx_propertiesFile=
/opt/OpenNMS/etc/qosdrx.properties

(Note :This configuration is not used as the currnet
qosdrx configuration is contained in
QoSDrxOssBeanRunnerSpringContext.xml. However
qosdrx properties could be used if the commented out
example referencing lines in
QoSDrxOssBeanRunnerSpringContext.xml are
enabled.

-Dqosd.usej2ee=false

If set false , this property tells qosd to run internally to
opennms and publish to the external JbossMQ topics.
The interface then only supports AlarmEvents but
runs natively in OpenNMS. This is the simplest
configuration and recommended for normal use.

If set true, this property tells qosd to connect to the
OSSbeans-qos-ear-xx.ear running in a local Jboss
server. This then allows JVT access to the alarm list.

service-configuration.xml

This file is used by OpenNMS to startup it's deamons.
To run qosd uncomment the section beginning
<service>
<name>0OpenNMS:Name=QoSD</name>
To run qosdrx uncomment the section beginning:
<service>
<name>0OpenNMS:Name=QoSDrx</name>

gosd and qosdrx can be run at the same time. However
make sure that qosdrx is not configured to listen to the
output from qosd — otherwise you will have a very
effective positive feedback loop and an ever increaing
list of alarms! In this example configuration qosd
publishes to Topic .../OpenOSS/... and qosdrx listens
to topic .../OpenOSS1/...

QoSD-configuration.xml

This file sets the events which the qosdaemon code
will listen to. By default it listens for the event
generated by the vacummd configuration when the
alarm list changes;
uei.opennms.org/vacuumd/alarmListChanged

and for events signifying changes in the node

inventory which it uses to update it's local managed

object instance and managed object type cache:
uei.opennms.org/nodes/assetiInfoChanged
uei.opennms.org/nodes/nodeAdded
uei.opennms.org/nodes/nodeLabelChanged
uei.opennms.org/nodes/nodeDeleted

QoSDrxOssBeanRunnerSpringContext.xml

This file is a spring application context to set up the
configuration for the qosdrx. Seperate threads are set
up to connect to each topic.

A list of processes to run is in the segment

<bean id="OssBeanRunnerList"

The definition of each thread is given below. e.g.
<bean id="Outstation_OpenOSS1"
TODO - full description of this config file

gosdrx.properties

Optional — see note in opennms.conf above

log4j.properties

This file sets up logging for the daemons in
openNMS. Two additions are made for QoSD and
QoSDrx.

QoS daemon server
log4j.category.OpenOSS.QoSD=DEBUG, QOSD

QoSrx daemon server
log4j.category.OpenOSS.QoSDrx=DEBUG,

QOSDRX

Note: In production you should set the logging options
in this file to INFO as DEBUG is extremely verbose
and will quickly create very large log files and also
slow down the QoSD and QoSD deamons
significantly..

rmi.policy

Used to allow remote rmi connections to Jboss. (See
opennms.conf above). Note that this setting is wide
open. You might want to tighten up access security in
a production environment.

rrd-configuration.properties

Sets rrd to use jrobin as default instead of rddTool
format.

(Note that this was needed for the BUTE Qos
performance code and not needed for the present
gosdaemon)

web.xml

Sets up opennms to use tomcat on port 8081 nd also to
refresh the alarm list display at 10 second intervals.

/opennms_fault_config

eventconf.xml events

Configures how opennms treats incomming traps and
events. Note in this configuration this is the same as
eventconf_NoOpennmsalarms.xml

This file references additional events in
/ossj_events.xml

eventconf_WithOpennmsalarms.xml

This is default eventconf.xml with additional oss;j
events referencing /events/ossj_events.xml

eventconf_NoOpennmsalarms.xml

This is default eventconf.xml with additional oss;j
events but without the opennms generated alarms.
This means the alarm list only contains alarms which
have been generted as the result of traps

vacuumd-configuration.xml

VERY Important.

Contains automation which looks for new alarms in
the alarm list and calls the Qosd daemon using the
new uei.opennms.org/vacuumd/alarmListChanged
event when new alarms are found. Also reconciles
raise with clear alarms and deletes cleared and
acknowledged alarms

/events

Contains additional event definitions referenced by
eventconf.xml

ossj_events.xml

Contains the oss;j specific events created for the
gosdeaemon interface and some test snmp trap
definitions to allow the scripts in /testtraps to work

/testtraps

ossjtesttraps_raise.sh

Simple script to raise an alarm on node 127.0.0.1
Alarm raised is definred in ossj_events.xml
<uei>uei.opennms.org/ossjTestEvent/newAlarm/1</u
ei>

ossjtesttraps_clear.sh

Simple script to raise an alarm on node 127.0.0.1
alarm cleared is defined in ossj_events.xml
<uei>uei.opennms.org/ossjTestEvent/clearAlarm/1</u

ei>
trapgen Simple utility for generating traps from scripts.
Written by http://www.ncomtech.com/trapgen.html
Note to run this on fc4 you must also have the library
compat-libstdc++-296-2.96-132.fc4.i386.rpm installed
/tomcat55
server.xml Sets up tomcat to run on port 8081

tomcat55.conf

Various setting to get tomcat55 running on fedora
core 4 with opennms;
sets JVM, Tomcat user=root etc

/images

The images directory was used for the BUTE
performance management application. Not presently
used.

OSS_logo_final.gif

WEB-INF

web.xml

http://www.ncomtech.com/trapgen.html

Appendix 2: Notes on setting up qosdaemon on Fedora 4

These notes are intended to provide some help in getting OpenNMS runnning with the qosdaemon

on Fedora Core 4. They can be adapted to other distributions.

Installing OpenNMS 1.3.2-SNAPSHOT

The following summarises the instructions for installing OpenNMS Fedora 4 based on

http://www.opennms.org/index.php/Building_ OpenNMS

preliminary set up of FC4

1.

It is usefull to have yumex installed as a visual package manager. This makes it easier to
pick packages you need for the next steps. (yum install yumex)
Ensure subversion is installed on your machine (yum install subversion)
Ensure java 1.5 is installed on your machine. This is best done on Fedora core using
Jpackage which allows you to easily download and install java packages from the jpackage
repo.The following note explains how to use jpackage to install sun java 1.5 on fedora core
http://fedoranews.org/mediawiki/index.php/JPackage_Java_for_FC4
After installing jpackage, the jpackage repo and java 1.5, install tomcat55 using yumex
(do this after jpackage repo is installed so that tomcat gets the right dependancies). Start
up tomcat to check it is running and has correct dependancies before proceeding;
sudo /sbin/service tomcat55 start
browse to http://localhost:8080 - if tomcat splash is displayed you are in business
stop tomcat before proceeding; sudo /sbin/service tomcat55 stop
Ensure postgres is installed (yum install postgresql)
Ensure maven? is installed on your machine (Note that maven?2 is inclueded in the opennms
build and opennms will build without it installed. However we need maven?2 if you want to
build the OSSbeans package seperately.
a) download maven 2.0.4 from http://maven.apache.org/
b) unpack into /usr/local/maven-2.0.4/
¢) place the maven /bin directory on your classpath and set up JAVA_HOME to point to
your java 1.5 jre. On Fedora core 4 the following .bashrc login script sets this up when
you login;
.bashrc
User specific aliases and functions
PATH=$PATH:/usr/local/maven/maven-2.0.4/bin
export PATH
export JAVA_HOME=/usr/lib/jvm/java
Source global definitions
if [-f /etc/bashrc |; then
. letc/bashrc
fi

d) after setting up the classpath check maven is installed correctly by typing mvn --version

Installing OpenNMS (this is a standard install of opennms on fc4)
7. cd to directory where you want to download and build opennms source code and issue the
command;
svn co https://svn.sourceforge.net/svnroot/opennms/opennms/trunk opennms
8. cd to the downloaded opennms directory (cd opennms)
9. Type the following commands
sh build.sh clean # this should be done before any build to clean out any previous data
sh build.sh install -Dopennms.home=/opt/OpenNMS package assembly:attached
This command will use maven to build opennms. On first use it will take some time as it
will download all of the dependancies into a local maven repository on your machine
($home/.m2).
Note: once the dependancies are downloaded, you can do a build offline using
sh build.sh -o install -Dopennms.home=/opt/OpenNMS package assembly:attached
10. this builds a zip file called opennms-1.3.2-SNAPSHOT.tar.gz in the target directory. Copy
this zip file to /opt/OpenNMS and unpack the contents (need to be root to do this)
11. Follow the instructions in the opennms config guide in /opt/OpenNMS/docs/install.html to
set up the postgres database if it is not already set up.
12. Set up the open nms application using following steps;
a) cd /opt/OpenNMS/bin
b) make the scripts runnable; sudo chmod 777 *
¢) point openNMS at the jvm; sudo sh runjava -s
d) upgrade /install the database tables;
sudo sh install -disU
(this will upgrade an existing database or install a new one if needed)
e) link tomcat55 to the opennms web app;
sudo sh install -y -w /usr/share/tomcat55/conf/Catalina/localhost
13. Start open nms and tomcat and check all is running;
to start opennms
cd /opt/OpenNMS /bin directory ; sudo sh opennms -v start
the consol should show all of daemons starting up correctly
start tomcat;
sudo /sbin/service tomcat55 start
browse to http://localhost:8080/opennms and login using account: admin; password: admin
14. once you are satisfied all is working, shutdown opennms and tomcat before trying to get the
gosdaemon to work
sudo sh opennms -v stop
sudo /sbin/service tomcatS55 stop

running the gosd application
The previous steps provides a standard install of opennms of fc4. Having installed opennms the

following steps will allow you to test qosd on your system
15. install jboss 4.0.2

16.

17.

b)

d)

e)

jboss provides the jms messaging service. It can be installed on a remote machine but in
this example we are installing it locally. Note that the qosdaemon test scripts need some
jars from the jboss install to be copied to the /opt/OpenNMS/lib directory. Ideally these
whould have been included in the OpenNMS build but unfortunately they are not
avaliable in any Maven repository.

download jboss 4.0.2 from http://labs.jboss.com/portal/jbossas/download
(jboss4.0.2.zip)

unpack jboss4.0.2.zip into /opt/

create a symbolic link from /opt/jboss/ to /opt/jboss2.0.2 ;

sudo In -s /opt/jboss-4.0.2 /opt/jboss

For this configuration you need to create a host name 'jbossjmsserverl' pointing to this
server. To do this from the kde toolbar open /system settings/ network and select the
hosts tab. Select new and add a host with Hostname: jbossjmsserverl Address 127.0.0.1

a simple example configuration and install script to get the qosdaemon running can be found

in the OpenNMS contrib directory.

a)
b)

c)

cd /opt/OpenNMS/contrib/qosdaemon/qos_example_configuration

A script is provided to move all of the configuration files into the appropriate directories
and get you started.

WARNING: Note - this configuration is provided as an example and will overwrite the
opennms default configuration or any other configuration you have installed. It will also
change the tomcat55 configuration so that it runs on port 8081 to allow jboss to run on
port 8080. (If you will not be running jboss on the local machine the tomcat
configuration can be omitted). You can easily adapt this configuration to work with your
local configuration but you will need to merge the configuration files appropriately.

To install the qosdeamon configuration ;

sudo sh opennms_1_3_2_example_deploy_1dot0.sh

Test that the OSS/J test clients work with jboss

a)

b)

d)

open a terminal window and move to the Jboss bin directory

cd /opt/jboss/bin

run the newly installed startup script;

sudo sh openoss_qos_jboss_start.sh

You should see the jboss consol log. If all is well Jboss will start up .

Leave this window open as Jboss will stop if you close it. (You can run jboss as a
daemon but this is not covered here). To stop jboss properly type control-c in this
window.

To see if Jboss is working open a new terminal and try;

telnet jbossjmsserver 1099

You should see something like;

http://labs.jboss.com/portal/jbossas/download

Trying 192.168.2.4...

Connected to jbossjmsserverl (192.168.2.4).

Escape character is "\]".

.srjava.rmi.MarshalledObject!?

>IhashlocBytest[BobjBytesq~xp?Fur[Txp& ?thttp://bitterne:8083/q~q~uq~??sr
org.jnp.server.NamingServer_Stubxr?java.rmi.server.RemoteStub????xrjava.rmi.server.RemoteObject?
a3xpw:

Unicast?

Connection closed by foreign host.

e) Use the client test program to connect to jboss
cd /opt/OpenNMS/contrib
sh opennms_IF.sh -xreceivel
You should see something like;

starting sentinal interface program

k*(Option: receive - testing OSS/J connection only*

Initialise Session:

Client Properties File Loaded

Using JNP: jnp://jbossjmsserver1:1099

java.naming.provider.url= jnp://jbossjmsserver1:1099

java.naming.factory.initial= org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs= org.jboss.naming

Initial context created

Trying to connect to AlarmMonitorBean

Connecting to AlarmMonitorBean:System/OpenOSS/ApplicationType/AlarmMonitor/Applica
Obtained home, and created Session

Trying to connect to message queues

Topic Connection Factory:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1
Event Topic :System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;0p
XVT Event Topic:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;0p
XML Message Queue:System/OpenOSS/ApplicationType/AlarmMonitor/Application/1-0;0-0;
Session Initialised

Subscribing to OSS/J XVT jms session:

Subscribed - Waiting for events ;

Waiting: Event Counts:- ListRebuilt:0 NewAlrmEvt:0 ClrAlrmEvt:0 AlrmCngEvt ObjMsg:0
TxtMsg:0

F*¥Waiting for OSS/J XVT XML JMS text message event*

When OpenNMS starts up you will see the client displaying events and he Event Counts
will go up as each event arrives.

To stop the client use Control-c

To see other options for the client try; sh opennms_IF.sh -help

Leave the client running while you start up OpenNMS

18. Test OpenNMS
a) In the following tests it may be neccessary to first clear the openNMS alarm table of old
alarms so you can see what is happening . You can use the postgres gui application
pgadmlllI to provide an sql terminal to look at the alarm table. Once you have logged

into the OpenNMS database you can use;
delete from alarms; # to delete alarms in table
select * from alarm; # to view all of the alarms in the table.
b) start opennms (/opt/OpenNMS/bin/ sudo sh opennms.-v start). After a short time you
should see the following; QoSD and QoSDrx are the two daemons for the qosddeamon

interface.
OpenNMS.Eventd : running
OpenNMS.Trapd : running
OpenNMS.Dhcpd : running
OpenNMS. Actiond : running
OpenNMS.Capsd : running
OpenNMS.Notifd : running
OpenNMS.Scriptd : running
OpenNMS.Rtcd : running

OpenNMS.Pollerd : running
OpenNMS.Collectd : running
OpenNMS.Threshd : running
OpenNMS.Discovery : running
OpenNMS.Vacuumd : running
OpenNMS.EventTranslator: running
OpenNMS .PassiveStatusd : running
OpenNMS.QoSD : running
OpenNMS.QoSDrx : running

Note - the logs for QoSD and QoSDrx are in the /logs library. By default the logging

setting is very very verbose. To reduce the log output edit before starting opennms the
/opt/OpenNMS/etc/log4j.properties change the lines from DEBUG to INFO;
QoSrx daemon server
log4j.category.OpenOSS.QoSDrx=DEBUG, QOSDRX
QoSrx daemon server
log4j.category.OpenOSS.QoSDrx=DEBUG, QOSDRX
¢) Look at the running opennms_IF.sh client. You should see it has received at least an
'AlarmListRebuilt event and possibly others if there were already alarms in the
OpenNMS alarms list
d) Open a browser and look at the OpenNMS alarm list at
http://localhost:808 1/opennms/alarm/
e) Try injecting test alarm raise and alarm clear traps using the following scripts.
cd /opt/OpenNMS/contrib/qosdaemon/qos_example_configuration/testtraps
sudo sh ossjtesttraps_raise.sh
sudo sh ossjtesttraps_clear.sh
You should see alarms added and deleted from the web alarm list as it refreshes
You should also see XML alarm events on the opennms_IF.sh terminal.
19. To test that the qosdrx works you need to install another OpenNMS on a seperate server
and change its configuration so that it injects alarms onto the opennms running qosdrx

http://localhost:8081/opennms/alarm/

a) Install and test OpenNMS as above

b) edit /opt/OpenNMS/etc/service-configuration.xml and comment out the section which
starts up qosdrx. The remote OpenNMS should not be running qosdra as it will get into a
feedback loop.

<!--
<service>
<name>OpenNMS:Name=QoSDrx</name>
<class-
name>org.openoss.opennms.spring.qosdrx.jmx.QoSDrx</class-name>
<invoke at="start" pass="0" method="1nit"/>
<invoke at="start" pass="1" method="start"/>
<invoke at="status" pass="0" method="status"/>
<invoke at="stop" pass="0" method="stop"/>
</service>

c) Edit /opt/OpenNMS/etc/qosd.properties. Change 'OpenOSS' to OpenOSS1 as below.
The OpenNMS qosd will now send alarms to the OpenOSS1 topic;

d)

This completes the installation and testing of the Qos interface. See the sections above for more

org.openoss.opennms.spring.qosd.naming.provider=jnp://jbossjmsserver1:1099
org.openoss.opennms.spring.qosd.naming.contextfactory=org.jnp.interfaces.Na
mingContextFactory
org.openoss.opennms.spring.qosd.naming.pkg=org.jboss.naming

org.openoss.opennms.spring.qosd.jvthome=System/OpenOSS1/ApplicationType
/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/JVTHome

org.openoss.opennms.spring.qosd.jms.topicconnectionfactory=System/OpenOS
S1/ApplicationType/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/TopicConnectionFactory
org.openoss.opennms.spring.qosd.jms.topic=System/OpenOSS1/ApplicationTyp
e/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/JVTEventTopic

org.openoss.qosd.jms.xvttopic=System/OpenOSS 1/ApplicationType/AlarmMon
itor/Application/1-0;0-0;0penNMS_OpenOSS_AM/Comp/XVTEventTopic

org.openoss.qosd.jms.queueconnectionfactory=System/OpenOSS1/ApplicationT
ype/AlarmMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/QueueConnectionFactory
org.openoss.qosd.jms.messagequeue=System/OpenOSS1/ApplicationType/Alar
mMonitor/Application/1-0;0-
0;0penNMS_OpenOSS_AM/Comp/MessageQueue

org.openoss.opennms.spring.qosd.url=http://OpenOSS1:8081/opennms

To test if this OpenNMS is sending messages correctly open a new terminal and start a

client to listen to its queue. For convenience this can be done using the script
cd /opt/OpenNMS/contrib
sh opennms_IFOpenOSS1.sh -xreceivel

Start the second opennms you should see it start up with only the qosd daemon running .
You should also see the opennms_IFOpenOSS1.sh terminal register an alarm list rebuilt

event

Try injecting alarms using the trap scripts above into the second opennms. You should

see the first opennms alarm list match the changing remote opennms alarm list.

information on how to configure the interface in you environment.

	OpenNMS qosdaemon Documentation
	Introduction to OSS/J
	OSS/J Conformance
	Production Use
	Liscence
	Functionality Provided
	QoSD daemon
	a. Native OpenNMS provided interface.
	b. Separate J2EE server provided interface.

	QoSDrx

	Appendix 1: Example Configuration of the OSS/J interface
	Appendix 2: Notes on setting up qosdaemon on Fedora 4
	Installing OpenNMS 1.3.2-SNAPSHOT

